sync

用于强制被改变的内容立刻写入磁盘

补充说明

sync命令 用于强制被改变的内容立刻写入磁盘,更新超块信息。

在Linux/Unix系统中,在文件或数据处理过程中一般先放到内存缓冲区中,等到适当的时候再写入磁盘,以提高系统的运行效率。sync命令则可用来强制将内存缓冲区中的数据立即写入磁盘中。用户通常不需执行sync命令,系统会自动执行update或bdflush操作,将缓冲区的数据写 入磁盘。只有在update或bdflush无法执行或用户需要非正常关机时,才需手动执行sync命令。

语法

1
sync(选项)

选项

1
2
--help:显示帮助;
--version:显示版本信息。

buffer与cache

  • buffer:为了解决写磁盘的效率
  • cache:为了解决读磁盘的效率

linux系统为了提高读写磁盘的效率,会先将数据放在一块buffer中。在写磁盘时并不是立即将数据写到磁盘中,而是先写入这块buffer中了。此时如果重启系统,就可能造成数据丢失。

sync命令用来flush文件系统buffer,这样数据才会真正的写到磁盘中,并且buffer才能够释放出来,flush就是用来清空buffer。sync命令会强制将数据写入磁盘中,并释放该数据对应的buffer,所以常常会在写磁盘后输入sync命令来将数据真正的写入磁盘。

如果不去手动的输入sync命令来真正的去写磁盘,linux系统也会周期性的去sync数据。

swapon

激活Linux系统中交换空间

补充说明

swapon命令 用于激活Linux系统中交换空间,Linux系统的内存管理必须使用交换区来建立虚拟内存。

语法

1
swapon(选项)(参数)

选项

1
2
3
4
5
-a:将/etc/fstab文件中所有设置为swap的设备,启动为交换区;
-h:显示帮助;
-p<优先顺序>:指定交换区的优先顺序;
-s:显示交换区的使用状况;
-V:显示版本信息。

参数

交换空间:指定需要激活的交换空间,可以是交换文件和交换分区,如果是交换分区则指定交换分区对应的设备文件。

实例

1
2
3
4
5
6
mkswap -c /dev/hdb4 (-c是检查有无坏块)
swapon -v /dev/hdb4
swapon -s
Filename type Size Used Priority
/dev/hda5 partition 506008 96 -1
/dev/hdb4 partition 489972 0 -2

swapoff

关闭指定的交换空间

补充说明

swapoff命令 用于关闭指定的交换空间(包括交换文件和交换分区)。swapoff实际上为swapon的符号连接,可用来关闭系统的交换区。

语法

1
swapoff(选项)(参数)

选项

1
-a:关闭配置文件“/etc/fstab”中所有的交换空间。

参数

交换空间:指定需要激活的交换空间,可以是交换文件和交换分区,如果是交换分区则指定交换分区对应的设备文件。

实例

关闭交换分区

1
swapoff /dev/sda2

supervisord

配置后台服务/常驻进程的进程管家工具

安装

1
2
# 安装 supervisord
apt-get install supervisor

实例

生成配置文件 /etc/supervisord.conf

1
2
3
4
[program:app]
command=/usr/bin/gunicorn -w 1 wsgiapp:application
directory=/srv/www
user=www-data

supervisord: 启动 supervisor 服务

1
2
3
supervisorctl start app
supervisorctl stop app
supervisorctl reload # 修改/添加配置文件需要执行这个

下载地址

https://pypi.python.org/pypi/meld3
https://pypi.python.org/pypi/supervisor

sum

计算文件的校验码和显示块数

补充说明

sum命令 用于计算并显示指定文件的校验和与文件所占用的磁盘块数。

语法

1
sum(选项)(参数)

选项

1
2
-r:使用BSD的校验和算法,块大小为1k;
-s:使用system V的校验和算法,块大小为512字节。

参数

文件列表:需要计算和与磁盘块数的文件列表。

实例

计算文件校验码:

1
2
[root@localhost ~]# sum insert.sql
00827 12

sudo

以其他身份来执行命令

补充说明

sudo命令 用来以其他身份来执行命令,预设的身份为root。在/etc/sudoers中设置了可执行sudo指令的用户。若其未经授权的用户企图使用sudo,则会发出警告的邮件给管理员。用户使用sudo时,必须先输入密码,之后有5分钟的有效期限,超过期限则必须重新输入密码。

语法

1
sudo(选项)(参数)

选项

1
2
3
4
5
6
7
8
9
10
-b:在后台执行指令;
-h:显示帮助;
-H:将HOME环境变量设为新身份的HOME环境变量;
-k:结束密码的有效期限,也就是下次再执行sudo时便需要输入密码;。
-l:列出目前用户可执行与无法执行的指令;
-p:改变询问密码的提示符号;
-s<shell>:执行指定的shell;
-u<用户>:以指定的用户作为新的身份。若不加上此参数,则预设以root作为新的身份;
-v:延长密码有效期限5分钟;
-V :显示版本信息。

参数

指令:需要运行的指令和对应的参数。

实例

1
2
$ sudo su -
# env | grep -E '(HOME|SHELL|USER|LOGNAME|^PATH|PWD|TEST_ETC|TEST_ZSH|TEST_PRO|TEST_BASH|TEST_HOME|SUDO)'

这个命令相当于使用root超级用户重新登录一次shell,只不过密码是使用的当前用户的密码。而且重要是,该命令会 重新加载/etc/profile文件以及/etc/bashrc文件等系统配置文件,并且还会重新加载root用户的$SHELL环境变量所对应的配置文件 ,比如:root超级用户的$SHELL是/bin/bash,则会加载/root/.bashrc等配置。如果是/bin/zsh,则会加载/root/.zshrc等配置,执行后是完全的root环境。

1
2
$ sudo -i
# env | grep -E '(HOME|SHELL|USER|LOGNAME|^PATH|PWD|TEST_ETC|TEST_ZSH|TEST_PRO|TEST_BASH|TEST_HOME|SUDO)'

这个命令基本与 sudo su - 相同,执行后也是root超级用户的环境,只不过是多了一些当前用户的信息。

1
2
$ sudo -s
# env|grep -E '(HOME|SHELL|USER|LOGNAME|^PATH|PWD|TEST_ETC|TEST_ZSH|TEST_PRO|TEST_BASH|TEST_HOME|SUDO)' --color

这个命令相当于 以当前用户的$SHELL开启了一个root超级用户的no-login的shell,不会加载/etc/profile等系统配置 。所以/etc/profile文件中定义的TEST_ETC环境变量就看不到了,但是会加载root用户对应的配置文件,比如root用户的$SHELL是/bin/zsh,那么会加载/root/.zshrc配置文件,执行完后,不会切换当前用户的目录。

配置sudo必须通过编辑/etc/sudoers文件,而且只有超级用户才可以修改它,还必须使用visudo编辑。之所以使用visudo有两个原因,一是它能够防止两个用户同时修改它;二是它也能进行有限的语法检查。所以,即使只有你一个超级用户,你也最好用visudo来检查一下语法。

visudo默认的是在vi里打开配置文件,用vi来修改文件。我们可以在编译时修改这个默认项。visudo不会擅自保存带有语法错误的配置文件,它会提示你出现的问题,并询问该如何处理,就像:

1
>>> sudoers file: syntax error, line 22 <<

此时我们有三种选择:键入“e”是重新编辑,键入“x”是不保存退出,键入“Q”是退出并保存。如果真选择Q,那么sudo将不会再运行,直到错误被纠正。

现在,我们一起来看一下神秘的配置文件,学一下如何编写它。让我们从一个简单的例子开始:让用户Foobar可以通过sudo执行所有root可执行的命令。以root身份用visudo打开配置文件,可以看到类似下面几行:

1
2
# Runas alias specification
# User privilege specificationroot ALL=(ALL)ALL

我们一看就明白个差不多了,root有所有权限,只要仿照现有root的例子就行,我们在下面加一行(最好用tab作为空白):

1
foobar ALL=(ALL)    ALL

保存退出后,切换到foobar用户,我们用它的身份执行命令:

1
2
3
4
5
6
[foobar@localhost ~]$ ls /root
ls: /root: 权限不够

[foobar@localhost ~]$ sudo ls /root
PassWord:
anaconda-ks.cfg Desktop install.log install.log.syslog

好了,我们限制一下foobar的权利,不让他为所欲为。比如我们只想让他像root那样使用ls和ifconfig,把那一行改为:

1
foobar localhost=    /sbin/ifconfig,   /bin/ls

再来执行命令:

1
2
3
4
5
[foobar@localhost ~]$ sudo head -5 /etc/shadow
Password:
Sorry, user foobar is not allowed to execute '/usr/bin/head -5 /etc/shadow' as root on localhost.localdomain.

[foobar@localhost ~]$ sudo /sbin/ifconfigeth0 Linkencap:Ethernet HWaddr 00:14:85:EC:E9:9B...

现在让我们来看一下那三个ALL到底是什么意思。第一个ALL是指网络中的主机,我们后面把它改成了主机名,它指明foobar可以在此主机上执行后面的命令。第二个括号里的ALL是指目标用户,也就是以谁的身份去执行命令。最后一个ALL当然就是指命令名了。例如,我们想让foobar用户在linux主机上以jimmy或rene的身份执行kill命令,这样编写配置文件:

1
foobar    linux=(jimmy,rene)    /bin/kill

但这还有个问题,foobar到底以jimmy还是rene的身份执行?这时我们应该想到了sudo -u了,它正是用在这种时候。 foobar可以使用sudo -u jimmy kill PID或者sudo -u rene kill PID,但这样挺麻烦,其实我们可以不必每次加-u,把rene或jimmy设为默认的目标用户即可。再在上面加一行:

1
Defaults:foobar    runas_default=rene

Defaults后面如果有冒号,是对后面用户的默认,如果没有,则是对所有用户的默认。就像配置文件中自带的一行:

1
Defaults    env_reset

另一个问题是,很多时候,我们本来就登录了,每次使用sudo还要输入密码就显得烦琐了。我们可不可以不再输入密码呢?当然可以,我们这样修改配置文件:

1
foobar localhost=NOPASSWD:     /bin/cat, /bin/ls

再来sudo一下:

1
2
[foobar@localhost ~]$ sudo ls /rootanaconda-ks.cfg Desktop install.log
install.log.syslog

当然,你也可以说“某些命令用户foobar不可以运行”,通过使用!操作符,但这不是一个好主意。因为,用!操作符来从ALL中“剔出”一些命令一般是没什么效果的,一个用户完全可以把那个命令拷贝到别的地方,换一个名字后再来运行。

日志与安全

sudo为安全考虑得很周到,不仅可以记录日志,还能在有必要时向系统管理员报告。但是,sudo的日志功能不是自动的,必须由管理员开启。这样来做:

1
2
touch /var/log/sudo
vi /etc/syslog.conf

在syslog.conf最后面加一行(必须用tab分割开)并保存:

1
local2.debug                    /var/log/sudo

重启日志守候进程,

1
ps aux grep syslogd

把得到的syslogd进程的PID(输出的第二列是PID)填入下面:

1
kill –HUP PID

这样,sudo就可以写日志了:

1
2
3
4
5
[foobar@localhost ~]$ sudo ls /rootanaconda-ks.cfg
Desktop install.log
install.log.syslog
$cat /var/log/sudoJul 28 22:52:54 localhost sudo: foobar :
TTY=pts/1 ; pwd=/home/foobar ; USER=root ; command=/bin/ls /root

不过,有一个小小的“缺陷”,sudo记录日志并不是很忠实:

1
2
3
[foobar@localhost ~]$ sudo cat /etc/shadow > /dev/null
cat /var/log/sudo...Jul 28 23:10:24 localhost sudo: foobar : TTY=pts/1 ;
PWD=/home/foobar ; USER=root ; COMMAND=/bin/cat /etc/shadow

重定向没有被记录在案!为什么?因为在命令运行之前,shell把重定向的工作做完了,sudo根本就没看到重定向。这也有个好处,下面的手段不会得逞:

1
[foobar@localhost ~]$ sudo ls /root > /etc/shadowbash: /etc/shadow: 权限不够

sudo 有自己的方式来保护安全。以root的身份执行sudo-V,查看一下sudo的设置。因为考虑到安全问题,一部分环境变量并没有传递给sudo后面的命令,或者被检查后再传递的,比如:PATH,HOME,SHELL等。当然,你也可以通过sudoers来配置这些环境变量。

su

用于切换当前用户身份到其他用户身份

补充说明

su命令 用于切换当前用户身份到其他用户身份,变更时须输入所要变更的用户帐号与密码。

语法

1
su(选项)(参数)

选项

1
2
3
4
5
6
7
-c<指令>或--command=<指令>:执行完指定的指令后,即恢复原来的身份;
-f或——fast:适用于csh与tsch,使shell不用去读取启动文件;
-l或——login:改变身份时,也同时变更工作目录,以及HOME,SHELL,USER,logname。此外,也会变更PATH变量;
-m,-p或--preserve-environment:变更身份时,不要变更环境变量;
-s<shell>或--shell=<shell>:指定要执行的shell;
--help:显示帮助;
--version;显示版本信息。

参数

用户:指定要切换身份的目标用户。

实例

变更帐号为root并在执行ls指令后退出变回原使用者:

1
su -c ls root

变更帐号为root并传入-f选项给新执行的shell:

1
su root -f

变更帐号为test并改变工作目录至test的家目录:

1
su -test

stty

修改终端命令行的相关设置

补充说明

stty命令 修改终端命令行的相关设置。

语法

1
stty(选项)(参数)

选项

1
2
-a:以容易阅读的方式打印当前的所有配置;
-g:以stty可读方式打印当前的所有配置。

参数

终端设置:指定终端命令行的设置选项。

实例

在命令行下,禁止输出大写的方法:

1
2
stty iuclc     #开启
stty -iuclc #恢复

在命令行下禁止输出小写:

1
2
stty olcuc    #开启
stty -olcuc #恢复

打印出终端的行数和列数:

1
stty size

改变Ctrl+D的方法:

1
stty eof "string"

系统默认是Ctrl+D来表示文件的结束,而通过这种方法,可以改变!

屏蔽显示:

1
2
stty -echo   #禁止回显
stty echo #打开回显

测试方法:

1
stty -echo;read;stty echo;read

忽略回车符:

1
2
stty igncr     #开启
stty -igncr #恢复

定时输入:

1
2
3
4
5
6
7
8
timeout_read()
{
timeout=$1
old_stty_settings=`stty -g`  #save current settings
stty -icanon min 0 time 100  #set 10seconds,not 100seconds
eval read varname   #=read $varname
stty "$old_stty_settings"   #recover settings
}

更简单的方法就是利用read命令的-t选项:

1
read -t 10 varname

strings

在对象文件或二进制文件中查找可打印的字符串

补充说明

strings命令 在对象文件或二进制文件中查找可打印的字符串。字符串是4个或更多可打印字符的任意序列,以换行符或空字符结束。 strings命令对识别随机对象文件很有用。

语法

1
strings [ -a ] [ - ] [ -o ] [ -t Format ] [ -n Number ] [ -Number ]  [file ... ]

选项

1
2
3
4
5
6
7
8
9
-a --all:扫描整个文件而不是只扫描目标文件初始化和装载段
-f –print-file-name:在显示字符串前先显示文件名
-n –bytes=[number]:找到并且输出所有NUL终止符序列
- :设置显示的最少的字符数,默认是4个字符
-t --radix={o,d,x} :输出字符的位置,基于八进制,十进制或者十六进制
-o :类似--radix=o
-T --target= :指定二进制文件格式
-e --encoding={s,S,b,l,B,L} :选择字符大小和排列顺序:s = 7-bit, S = 8-bit, {b,l} = 16-bit, {B,L} = 32-bit
@ :读取中选项

实例

列出ls中所有的ASCII文本:

1
strings /bin/ls

列出ls中所有的ASCII文本:

1
cat /bin/ls strings

查找ls中包含libc的字符串,不区分大小写:

1
strings /bin/ls | grep -i libc

strace

跟踪系统调用和信号

补充说明

strace命令 是一个集诊断、调试、统计与一体的工具,我们可以使用strace对应用的系统调用和信号传递的跟踪结果来对应用进行分析,以达到解决问题或者是了解应用工作过程的目的。当然strace与专业的调试工具比如说gdb之类的是没法相比的,因为它不是一个专业的调试器。

strace的最简单的用法就是执行一个指定的命令,在指定的命令结束之后它也就退出了。在命令执行的过程中,strace会记录和解析命令进程的所有系统调用以及这个进程所接收到的所有的信号值。

语法

1
2
3
4
5
6
7
strace  [  -dffhiqrtttTvxx  ] [ -acolumn ] [ -eexpr ] ...
[ -ofile ] [-ppid ] ... [ -sstrsize ] [ -uusername ]
[ -Evar=val ] ... [ -Evar ]...
[command [ arg ... ] ]

strace -c [ -eexpr ] ... [ -Ooverhead ] [ -Ssortby ]
[ command [ arg... ] ]

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
-c 统计每一系统调用的所执行的时间,次数和出错的次数等.
-d 输出strace关于标准错误的调试信息.
-f 跟踪由fork调用所产生的子进程.
-ff 如果提供-o filename,则所有进程的跟踪结果输出到相应的filename.pid中,pid是各进程的进程号.
-F 尝试跟踪vfork调用.在-f时,vfork不被跟踪.
-h 输出简要的帮助信息.
-i 输出系统调用的入口指针.
-q 禁止输出关于脱离的消息.
-r 打印出相对时间关于,,每一个系统调用.
-t 在输出中的每一行前加上时间信息.
-tt 在输出中的每一行前加上时间信息,微秒级.
-ttt 微秒级输出,以秒了表示时间.
-T 显示每一调用所耗的时间.
-v 输出所有的系统调用.一些调用关于环境变量,状态,输入输出等调用由于使用频繁,默认不输出.
-V 输出strace的版本信息.
-x 以十六进制形式输出非标准字符串
-xx 所有字符串以十六进制形式输出.
-a column 设置返回值的输出位置.默认 为40.
-e expr 指定一个表达式,用来控制如何跟踪.格式:[qualifier=][!]value1[,value2]...
qualifier只能是 trace,abbrev,verbose,raw,signal,read,write其中之一.value是用来限定的符号或数字.默认的 qualifier是 trace.感叹号是否定符号.例如:-eopen等价于 -e trace=open,表示只跟踪open调用.而-etrace!=open 表示跟踪除了open以外的其他调用.有两个特殊的符号 all 和 none. 注意有些shell使用!来执行历史记录里的命令,所以要使用\\.
-e trace=set 只跟踪指定的系统 调用.例如:-e trace=open,close,rean,write表示只跟踪这四个系统调用.默认的为set=all.
-e trace=file 只跟踪有关文件操作的系统调用.
-e trace=process 只跟踪有关进程控制的系统调用.
-e trace=network 跟踪与网络有关的所有系统调用.
-e strace=signal 跟踪所有与系统信号有关的 系统调用
-e trace=ipc 跟踪所有与进程通讯有关的系统调用
-e abbrev=set 设定strace输出的系统调用的结果集.-v 等与 abbrev=none.默认为abbrev=all.
-e raw=set 将指定的系统调用的参数以十六进制显示.
-e signal=set 指定跟踪的系统信号.默认为all.如 signal=!SIGIO(或者signal=!io),表示不跟踪SIGIO信号.
-e read=set 输出从指定文件中读出 的数据.例如: -e read=3,5
-e write=set 输出写入到指定文件中的数据.
-o filename 将strace的输出写入文件filename
-p pid 跟踪指定的进程pid.
-s strsize 指定输出的字符串的最大长度.默认为32.文件名一直全部输出.
-u username 以username的UID和GID执行被跟踪的命令

实例

追踪系统调用

现在我们做一个很简单的程序来演示strace的基本用法。这个程序的C语言代码如下:

1
2
3
4
5
6
7
8
9
10
# filename test.c
#include <stdio.h>

int main()
{
int a;
scanf("%d", &a);
printf("%09d\n", a);
return 0;
}

然后我们用gcc -o test test.c编译一下,得到一个可执行的文件test。然后用strace调用执行:

1
strace ./test

执行期间会要求你输入一个整数,我们输入99,最后得到如下的结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// 直接执行test的结果
oracle@orainst[orcl]:~ $./test

// 执行的结果
99
000000099

// 通过strace执行test的结果
oracle@orainst[orcl]:~ $strace ./test

// strace的trace结果
execve("./test", ["./test"], [/* 41 vars */]) = 0
uname({sys="Linux", node="orainst.desktop.mycompany.com", ...}) = 0
brk(0) = 0x8078000
fstat64(3, {st_mode=S_IFREG|0644, st_size=65900, ...}) = 0
old_mmap(NULL, 65900, PROT_READ, MAP_PRIVATE, 3, 0) = 0xbf5ef000
close(3) = 0
open("/lib/tls/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200X\1"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1571692, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5ee000
old_mmap(NULL, 1275340, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xa02000
old_mmap(0xb34000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x132000) = 0xb34000
old_mmap(0xb37000, 9676, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb37000
close(3) = 0
set_thread_area({entry_number:-1 -> 6, base_addr:0xbf5ee740, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0
munmap(0xbf5ef000, 65900) = 0
fstat64(0, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5ff000
read(0, 99
"99\n", 1024) = 3
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5fe000
write(1, "000000099\n", 10000000099
) = 10
munmap(0xbf5fe000, 4096) = 0
exit_group(0) = ?

从trace结构可以看到,系统首先调用execve开始一个新的进行,接着进行些环境的初始化操作,最后停顿在”read(0,”上面,这也就是执行到了我们的scanf函数,等待我们输入数字呢,在输入完99之后,在调用write函数将格式化后的数值”000000099″输出到屏幕,最后调用exit_group退出进行,完成整个程序的执行过程。

跟踪信号传递

我们还是使用上面的那个test程序,来观察进程接收信号的情况。还是先strace ./test,等到等待输入的画面的时候不要输入任何东西,然后打开另外一个窗口,输入如下的命令

1
killall test

这时候就能看到我们的程序推出了,最后的trace结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
oracle@orainst[orcl]:~
$strace ./test

execve("./test", ["./test"], [/* 41 vars */]) = 0
uname({sys="Linux", node="orainst.desktop.mycompany.com", ...}) = 0
brk(0) = 0x9ae2000
old_mmap(NULL, 65900, PROT_READ, MAP_PRIVATE, 3, 0) = 0xbf5ef000
close(3) = 0
open("/lib/tls/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200X\1"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1571692, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5ee000
old_mmap(NULL, 1275340, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x2e9000
old_mmap(0x41b000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x132000) = 0x41b000
old_mmap(0x41e000, 9676, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x41e000
close(3) = 0
set_thread_area({entry_number:-1 -> 6, base_addr:0xbf5ee740, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0
munmap(0xbf5ef000, 65900) = 0
fstat64(0, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5ff000
read(0, 0xbf5ff000, 1024) = ? ERESTARTSYS (To be restarted)
--- SIGTERM (Terminated) @ 0 (0) ---
+++ killed by SIGTERM +++

trace中很清楚的告诉你test进程”+++ killed by SIGTERM +++”。

系统调用统计

strace不光能追踪系统调用,通过使用参数-c,它还能将进程所有的系统调用做一个统计分析给你,下面就来看看strace的统计,这次我们执行带-c参数的strace:

strace -c ./test

最后能得到这样的trace结果:

1
2
oracle@orainst[orcl]:~
$strace -c ./test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
execve("./test", ["./test"], [/* 41 vars */]) = 0
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
45.90 0.000140 5 27 25 open
34.43 0.000105 4 24 21 stat64
7.54 0.000023 5 5 old_mmap
2.62 0.000008 8 1 munmap
1.97 0.000006 6 1 uname
1.97 0.000006 2 3 fstat64
1.64 0.000005 3 2 1 read
1.31 0.000004 2 2 close
0.98 0.000003 3 1 brk
0.98 0.000003 3 1 mmap2
0.66 0.000002 2 1 set_thread_area
------ ----------- ----------- --------- --------- ----------------
100.00 0.000305 68 47 total

这里很清楚的告诉你调用了那些系统函数,调用次数多少,消耗了多少时间等等这些信息,这个对我们分析一个程序来说是非常有用的。

常用参数说明

除了-c参数之外,strace还提供了其他有用的参数给我们,让我们能很方便的得到自己想要的信息,下面就对那些常用的参数一一做个介绍。

重定向输出

参数-o用在将strace的结果输出到文件中,如果不指定-o参数的话,默认的输出设备是STDERR,也就是说使用”-o filename”和” 2>filename”的结果是一样的。

1
2
3
# 这两个命令都是将strace结果输出到文件test.txt中
strace -c -o test.txt ./test
strace -c ./test 2>test.txt

对系统调用进行计时

strace可以使用参数-T将每个系统调用所花费的时间打印出来,每个调用的时间花销现在在调用行最右边的尖括号里面。

1
2
3
4
5
6
7
8
9
10
11
12
oracle@orainst[orcl]:~
$strace -T ./test

// 这里只摘录部分结果
read(0, 1
"1\n", 1024) = 2 <2.673455>
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 <0.000014>
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf5fe000 <0.000017>
write(1, "000000001\n", 10000000001
) = 10 <0.000016>
munmap(0xbf5fe000, 4096) = 0 <0.000020>
exit_group(0) = ?

系统调用的时间

这是一个很有用的功能,strace会将每次系统调用的发生时间记录下来,只要使用-t/tt/ttt三个参数就可以看到效果了,具体的例子可以自己去尝试。



















































参数名输出样式说明
-t10:33:04 exit_group(0)输出结果精确到秒
-tt10:33:48.159682 exit_group(0)输出结果精确到微妙
-ttt1262169244.788478 exit_group(0)精确到微妙,而且时间表示为unix时间戳

截断输出

-s参数用于指定trace结果的每一行输出的字符串的长度,下面看看test程序中-s参数对结果有什么影响,现指定-s为20,然后在read的是是很我们输入一个超过20个字符的数字串

1
2
3
4
strace -s 20 ./test

read(0, 2222222222222222222222222 // 我们输入的2一共有25个
"22222222222222222222"..., 1024) = 26 // 而我们看到的结果中2只有20个

trace一个现有的进程

strace不光能自己初始化一个进程进行trace,还能追踪现有的进程,参数-p就是取这个作用的,用法也很简单,具体如下。

1
strace -p pid

综合例子

说了那么多的功能和参数,现在我们来一个实用点的,就是研究下Oracle的lgwr进程,看看这个进程是不是像文档所说的那样没3s钟写一次log文件,考虑到lgwr写日志的触发条件比较多,我们需要找一个空闲的Oracle实例做这个实验。

我们先要得到lgwr进程的pid,运行下面的命令

1
2
3
ps -ef|grep lgwr

oracle 5912 1 0 Nov12 ? 00:14:56 ora_lgwr_orcl

得到lgwr的pid是5912,现在启动strace,然后将trace的几个输出到lgwr.txt文件中,执行下面的命令

1
strace -tt -s 10 -o lgwr.txt -p 5912

过一会之后停止strace,然后查看结果。由于输出的结果比较多,为了方便我们只看Oracle写入log文件时用的pwrite函数的调用

1
grep pwrite\(20 lgwr.txt

等等,为什么grep的时候用的是”pwrite(2″呢?,因为我知道我这个机器打开的当前的log文件的句柄编号都是2开始的。具体查找方法是先使用下面的语句找出当前活动的日志文件都有哪些:

1
2
select member, v$log.status from v$log, v$logfile
where v$log.group#=v$logfile.group#;

得到

1
2
3
4
5
6
7
8
9
10
MEMBER                                             STATUS
-------------------------------------------------- ----------------
/db/databases/orcl/redo-01-a/redo-t01-g03-m1.log INACTIVE
/db/databases/orcl/redo-03-a/redo-t01-g03-m2.log INACTIVE
/db/databases/orcl/redo-02-a/redo-t01-g02-m1.log CURRENT
/db/databases/orcl/redo-04-a/redo-t01-g02-m2.log CURRENT
/db/databases/orcl/redo-01-a/redo-t01-g01-m1.log INACTIVE
/db/databases/orcl/redo-03-a/redo-t01-g01-m2.log INACTIVE
/db/databases/orcl/redo-02-a/redo-t01-g04-m1.log INACTIVE
/db/databases/orcl/redo-04-a/redo-t01-g04-m2.log INACTIVE

然后到/proc中去找打开文件的句柄:

1
ll /proc/.5912/fd/

得到

1
2
3
4
5
6
7
8
lrwx------    1 oracle   dba            64 Dec 30 10:55 18 -> /db/databases/orcl/redo-01-a/redo-t01-g01-m1.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 19 -> /db/databases/orcl/redo-03-a/redo-t01-g01-m2.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 20 -> /db/databases/orcl/redo-02-a/redo-t01-g02-m1.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 21 -> /db/databases/orcl/redo-04-a/redo-t01-g02-m2.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 22 -> /db/databases/orcl/redo-01-a/redo-t01-g03-m1.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 23 -> /db/databases/orcl/redo-03-a/redo-t01-g03-m2.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 24 -> /db/databases/orcl/redo-02-a/redo-t01-g04-m1.log
lrwx------ 1 oracle dba 64 Dec 30 10:55 25 -> /db/databases/orcl/redo-04-a/redo-t01-g04-m2.log

现在能看到我机器当前日志文件的句柄分别是20和21。

现在我们得到如下结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
11:13:55.603245 pwrite(20, "\1\"\0\0J!"..., 1536, 4363264) = 1536
11:13:55.603569 pwrite(21, "\1\"\0\0J!"..., 1536, 4363264) = 1536
11:13:55.606888 pwrite(20, "\1\"\0\0M!"..., 1536, 4364800) = 1536
11:13:55.607172 pwrite(21, "\1\"\0\0M!"..., 1536, 4364800) = 1536
11:13:55.607934 pwrite(20, "\1\"\0\0P!"..., 1536, 4366336) = 1536
11:13:55.608199 pwrite(21, "\1\"\0\0P!"..., 1536, 4366336) = 1536
11:13:55.610260 pwrite(20, "\1\"\0\0S!"..., 1536, 4367872) = 1536
11:13:55.610530 pwrite(21, "\1\"\0\0S!"..., 1536, 4367872) = 1536
11:14:00.602446 pwrite(20, "\1\"\0\0V!"..., 1536, 4369408) = 1536
11:14:00.602750 pwrite(21, "\1\"\0\0V!"..., 1536, 4369408) = 1536
11:14:00.606386 pwrite(20, "\1\"\0\0Y!"..., 1536, 4370944) = 1536
11:14:00.606676 pwrite(21, "\1\"\0\0Y!"..., 1536, 4370944) = 1536
11:14:00.607900 pwrite(20, "\1\"\0\0\\"..., 1024, 4372480) = 1024
11:14:00.608161 pwrite(21, "\1\"\0\0\\"..., 1024, 4372480) = 1024
11:14:00.608816 pwrite(20, "\1\"\0\0^!"..., 1024, 4373504) = 1024
11:14:00.609071 pwrite(21, "\1\"\0\0^!"..., 1024, 4373504) = 1024
11:14:00.611142 pwrite(20, "\1\"\0\0`!"..., 1536, 4374528) = 1536
11:14:00.611454 pwrite(21, "\1\"\0\0`!"..., 1536, 4374528) = 1536
11:14:05.602804 pwrite(20, "\1\"\0\0c!"..., 1024, 4376064) = 1024
11:14:05.603119 pwrite(21, "\1\"\0\0c!"..., 1024, 4376064) = 1024
11:14:05.607731 pwrite(20, "\1\"\0\0e!"..., 1024, 4377088) = 1024
11:14:05.608020 pwrite(21, "\1\"\0\0e!"..., 1024, 4377088) = 1024
11:14:05.608690 pwrite(20, "\1\"\0\0g!"..., 1024, 4378112) = 1024
11:14:05.608962 pwrite(21, "\1\"\0\0g!"..., 1024, 4378112) = 1024
11:14:05.611022 pwrite(20, "\1\"\0\0i!"..., 1536, 4379136) = 1536
11:14:05.611283 pwrite(21, "\1\"\0\0i!"..., 1536, 4379136) = 1536