perl

perl语言解释器

补充说明

perl命令 是perl语言解释器,负责解释执行perl语言程序。

语法

1
perl(选项)(参数)

选项

1
2
3
4
-w:输出有用的警告信息;
-U:允许不安全的操作;
-c:仅检查文件的语法;
-d:在调试下运行脚本程序。

参数

文件:要运行的perl脚本程序。

pathchk

检查文件中不可移植的部分

补充说明

pathchk命令 用来检查文件中不可移植的部分。

语法

1
pathchk(选项)(参数)

选项

1
2
3
4
5
-p:检查大多数的POSIX系统;
-P:检查空名字和“-”开头的文件;
--portability:检查所有的POSIX系统,等同于“-P-p”选项;
--help:显示帮助;
--wersion:显示版本号。

参数

  • 文件:带路径信息的文件;
  • 后缀:可选参数,指定要去除的文件后缀字符串。

patch

为开放源代码软件安装补丁程序

补充说明

patch命令 被用于为开放源代码软件安装补丁程序。让用户利用设置修补文件的方式,修改,更新原始文件。如果一次仅修改一个文件,可直接在命令列中下达指令依序执行。如果配合修补文件的方式则能一次修补大批文件,这也是Linux系统核心的升级方法之一。

语法

1
patch(选项)(参数)

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
-b或--backup:备份每一个原始文件;
-B<备份字首字符串>或--prefix=<备份字首字符串>:设置文件备份时,附加在文件名称前面的字首字符串,该字符串可以是路径名称;
-c或--context:把修补数据解译成关联性的差异;
-d<工作目录>或--directory=<工作目录>:设置工作目录;
-D<标示符号>或--ifdef=<标示符号>:用指定的符号把改变的地方标示出来;
-e或--ed:把修补数据解译成ed指令可用的叙述文件;
-E或--remove-empty-files:若修补过后输出的文件其内容是一片空白,则移除该文件;
-f或--force:此参数的效果和指定"-t"参数类似,但会假设修补数据的版本为新版本;
-F<监别列数>或--fuzz<监别列数>:设置监别列数的最大值;
-g<控制数值>或--get=<控制数值>:设置以RSC或SCCS控制修补作业;
-i<修补文件>或--input=<修补文件>:读取指定的修补问家你;
-l或--ignore-whitespace:忽略修补数据与输入数据的跳格,空格字符;
-n或--normal:把修补数据解译成一般性的差异;
-N或--forward:忽略修补的数据较原始文件的版本更旧,或该版本的修补数据已使 用过;
-o<输出文件>或--output=<输出文件>:设置输出文件的名称,修补过的文件会以该名称存放;
-p<剥离层级>或--strip=<剥离层级>:设置欲剥离几层路径名称;
-f<拒绝文件>或--reject-file=<拒绝文件>:设置保存拒绝修补相关信息的文件名称,预设的文件名称为.rej;
-R或--reverse:假设修补数据是由新旧文件交换位置而产生;
-s或--quiet或--silent:不显示指令执行过程,除非发生错误;
-t或--batch:自动略过错误,不询问任何问题;
-T或--set-time:此参数的效果和指定"-Z"参数类似,但以本地时间为主;
-u或--unified:把修补数据解译成一致化的差异;
-v或--version:显示版本信息;
-V<备份方式>或--version-control=<备份方式>:用"-b"参数备份目标文件后,备份文件的字尾会被加上一个备份字符串,这个字符串不仅可用"-z"参数变更,当使用"-V"参数指定不同备份方式时,也会产生不同字尾的备份字符串;
-Y<备份字首字符串>或--basename-prefix=--<备份字首字符串>:设置文件备份时,附加在文件基本名称开头的字首字符串;
-z<备份字尾字符串>或--suffix=<备份字尾字符串>:此参数的效果和指定"-B"参数类似,差别在于修补作业使用的路径与文件名若为src/linux/fs/super.c,加上"backup/"字符串后,文件super.c会备份于/src/linux/fs/backup目录里;
-Z或--set-utc:把修补过的文件更改,存取时间设为UTC;
--backup-if-mismatch:在修补数据不完全吻合,且没有刻意指定要备份文件时,才备份文件;
--binary:以二进制模式读写数据,而不通过标准输出设备;
--help:在线帮助;
--nobackup-if-mismatch:在修补数据不完全吻合,且没有刻意指定要备份文件时,不要备份文件;
--verbose:详细显示指令的执行过程。

参数

  • 原文件:指定需要打补丁的原始文件;
  • 补丁文件:指定补丁文件。

paste

将多个文件按列队列合并

补充说明

paste命令 用于将多个文件按照列队列进行合并。

语法

1
paste(选项)(参数)

选项

1
2
-d<间隔字符>或--delimiters=<间隔字符>:用指定的间隔字符取代跳格字符;
-s或——serial串列进行而非平行处理。

参数

文件列表:指定需要合并的文件列表。

passwd

用于让用户可以更改自己的密码

补充说明

passwd命令 用于设置用户的认证信息,包括用户密码、密码过期时间等。系统管理者则能用它管理系统用户的密码。只有管理者可以指定用户名称,一般用户只能变更自己的密码。

语法

1
passwd(选项)(参数)

选项

1
2
3
4
5
6
-d:删除密码,仅有系统管理者才能使用;
-f:强制执行;
-k:设置只有在密码过期失效后,方能更新;
-l:锁住密码;
-s:列出密码的相关信息,仅有系统管理者才能使用;
-u:解开已上锁的帐号。

参数

用户名:需要设置密码的用户名。

知识扩展

与用户、组账户信息相关的文件

存放用户信息:

1
2
/etc/passwd
/etc/shadow

存放组信息:

1
2
/etc/group
/etc/gshadow

用户信息文件分析(每项用:隔开)

1
2
3
4
5
6
7
8
例如:jack:X:503:504:::/home/jack/:/bin/bash
jack  //用户名
X  //口令、密码
503  //用户id(0代表root、普通新建用户从500开始)
504  //所在组
:  //描述
/home/jack/  //用户主目录
/bin/bash  //用户缺省Shell

组信息文件分析

1
2
3
4
5
6
7
8
9
例如:jack:$!$:???:13801:0:99999:7:*:*:
jack  //组名
$!$  //被加密的口令
13801  //创建日期与今天相隔的天数
0  //口令最短位数
99999  //用户口令
7  //到7天时提醒
*  //禁用天数
*  //过期天数

实例

如果是普通用户执行passwd只能修改自己的密码。如果新建用户后,要为新用户创建密码,则用passwd用户名,注意要以root用户的权限来创建。

1
2
3
4
5
[root@localhost ~]# passwd linuxde    //更改或创建linuxde用户的密码;
Changing password for user linuxde.
New UNIX password: //请输入新密码;
Retype new UNIX password: //再输入一次;
passwd: all authentication tokens updated successfully. //成功;

普通用户如果想更改自己的密码,直接运行passwd即可,比如当前操作的用户是linuxde。

1
2
3
4
5
6
[linuxde@localhost ~]$ passwd
Changing password for user linuxde. //更改linuxde用户的密码;
(current) UNIX password: //请输入当前密码;
New UNIX password: //请输入新密码;
Retype new UNIX password: //确认新密码;
passwd: all authentication tokens updated successfully. //更改成功;

比如我们让某个用户不能修改密码,可以用-l选项来锁定:

1
2
3
4
5
6
7
8
9
10
[root@localhost ~]# passwd -l linuxde    //锁定用户linuxde不能更改密码;
Locking password for user linuxde.
passwd: Success //锁定成功;

[linuxde@localhost ~]# su linuxde //通过su切换到linuxde用户;
[linuxde@localhost ~]$ passwd //linuxde来更改密码;
Changing password for user linuxde.
Changing password for linuxde
(current) UNIX password: //输入linuxde的当前密码;
passwd: Authentication token manipulation error //失败,不能更改密码;

再来一例:

1
2
3
4
5
6
[root@localhost ~]# passwd -d linuxde  //清除linuxde用户密码;
Removing password for user linuxde.
passwd: Success //清除成功;

[root@localhost ~]# passwd -S linuxde //查询linuxde用户密码状态;
Empty password. //空密码,也就是没有密码;

注意:当我们清除一个用户的密码时,登录时就无需密码,这一点要加以注意。

partprobe

不重启的情况下重读分区

补充说明

partprobe命令 用于重读分区表,当出现删除文件后,出现仍然占用空间。可以partprobe在不重启的情况下重读分区。

语法

1
partprobe(选项)(参数)

选项

1
2
3
4
-d:不更新内核;
-s:显示摘要和分区;
-h:显示帮助信息;
-v:显示版本信息。

参数

设备:指定需要确认分区表改变的硬盘对应的设备文件。

实例

使用partprobe不重启系统添加新的磁盘分区,主机自带硬盘超过300GB,目前只划分使用了3个主分区,不到70GB,如下:

1
2
3
4
5
[root@localhost ~]# df -h 
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 29G 3.7G 24G 14% /
/dev/sda2 29G 22G 5.2G 81% /oracle
tmpfs 2.0G 0 2.0G 0% /dev/shm
1
2
3
4
5
6
7
8
9
10
11
[root@localhost ~]# cat /proc/partitions
major minor #blocks name

8 0 311427072 sda
8 1 30716248 sda1
8 2 30716280 sda2
8 3 8193150 sda3
8 16 976896 sdb
8 32 976896 sdc

…省略其他

现在需要给系统添加1个100GB的空间存放数据文件,而又不影响现有系统上业务的运行,使用fdisk结合partprobe命令不重启系统添加一块新的磁盘分区。操作步骤如下:

第1步 添加新的磁盘分区

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
[root@localhost ~]# fdisk /dev/sda
The number of cylinders for this disk is set to 38770.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of lilo)
2) booting and partitioning software from other OSs
(e.g., DOS FDISK, OS/2 FDISK)

command (m for help): p

Disk /dev/sda: 318.9 GB, 318901321728 bytes
255 heads, 63 sectors/track, 38770 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks id System
/dev/sda1 * 1 3824 30716248+ 83 Linux
/dev/sda2 3825 7648 30716280 83 Linux
/dev/sda3 7649 8668 8193150 82 Linux swap / Solaris

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Selected partition 4
First cylinder (8669-38770, default 8669):
Using default value 8669
last cylinder or +size or +sizeM or +sizeK (8669-38770, default 38770): +100G
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 16:

Device or resource busy.
The kernel still uses the old table.
The new table will be used at the next reboot.
Syncing disks.

第2步 使用工具partprobe让kernel读取分区信息:

1
[root@localhost ~]# partprobe

使用fdisk工具只是将分区信息写到磁盘,如果需要mkfs磁盘分区则需要重启系统,而使用partprobe则可以使kernel重新读取分区信息,从而避免重启系统。

第3步 格式化文件系统:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
[root@localhost ~]# mkfs.ext3 /dev/sda4
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
12222464 inodes, 24416791 blocks
1220839 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
746 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
    2654208, 4096000, 7962624, 11239424, 20480000, 23887872

Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information:

done

This filesystem will be automatically checked every 26 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@localhost ~]#

第4步 mount新的分区/dev/sda4

1
2
3
4
5
6
7
8
9
[root@localhost ~]# e2label  /dev/sda4 /data
[root@localhost ~]# mkdir /data
[root@localhost ~]# mount /dev/sda4 /data
[root@localhost ~]# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 29753556 3810844 24406900 14% /
/dev/sda2 29753588 11304616 16913160 41% /oracle
tmpfs 2023936 0 2023936 0% /dev/shm
/dev/sda4 96132968 192312 91057300 1% /data

使用partprobe可以不用重启系统即可配合fdisk工具创建新的分区。

parted

磁盘分区和分区大小调整工具

补充说明

parted命令 是由GNU组织开发的一款功能强大的磁盘分区和分区大小调整工具,与fdisk不同,它支持调整分区的大小。作为一种设计用于Linux的工具,它没有构建成处理与fdisk关联的多种分区类型,但是,它可以处理最常见的分区格式,包括:ext2、ext3、fat16、fat32、NTFS、ReiserFS、JFS、XFS、UFS、HFS以及Linux交换分区。

语法

1
parted(选项)(参数)

选项

1
2
3
4
-h:显示帮助信息;
-i:交互式模式;
-s:脚本模式,不提示用户;
-v:显示版本号。

参数

  • 设备:指定要分区的硬盘所对应的设备文件;
  • 命令:要执行的parted命令。

实例

从串行技术出现以来,越来越多用户选择使用大容量的SATA硬盘创建磁盘阵列;特别是MD1000/MD3000,很轻易就突破2T的LUN,故在此给大家一些指引。

红帽企业 Linux 4 Update 4供对大于 2 terabytes(TB)的磁盘设备的支持。

请参考以下操作步骤:

注:

  • 绿色代表你需要使用的命令。
  • 红色代表你需要注意到的输出信息,在后续需要使用。
1
2
3
4
5
6
7
8
9
10
11
12
[root@localhost ~]# fdisk -l
Disk /dev/sda: 35.8 GB, 35862976512 bytes
255 heads, 63 sectors/track, 4360 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks id System
/dev/sda1 * 1 13 104391 83 Linux
/dev/sda2 14 144 1052257+ 82 Linux swap
/dev/sda3 145 4360 33865020 83 Linux
Disk /dev/sdb: 2147 MB, 2147483648 bytes
255 heads, 63 sectors/track, 261 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk /dev/sdb doesn't contain a valid partition table
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
[root@localhost ~]# parted /dev/sdb
GNU Parted Copyright (C) 1998 - 2004 free Software Foundation, Inc.
This program is free software, covered by the GNU General Public License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
使用/dev/sdb
(parted)mklabel gpt
(parted)print
/dev/sdb的磁盘几何结构:0.000-2048.000兆字节
磁盘标签类型:gpt
Minor 起始点 终止点 文件系统 名称 标志
(parted)mkpart primary 0 2048 <-----上面print显示的数字
(parted)print
/dev/sdb的磁盘几何结构:0.000-2048.000兆字节
磁盘标签类型:gpt
Minor 起始点 终止点 文件系统 名称 标志
1 0.017 2047.983
(parted)quit

如果必要,不要忘记更新/etc/fstab

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
[root@localhost ~]# fdisk -l
Disk /dev/sda: 35.8 GB, 35862976512 bytes
255 heads, 63 sectors/track, 4360 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sda1 * 1 13 104391 83 Linux
/dev/sda2 14 144 1052257+ 82 Linux swap
/dev/sda3 145 4360 33865020 83 Linux
WARNING: GPT (GUID Partition Table) detected on '/dev/sdb'! The util fdisk doesn't support GPT. Use GNU Parted.

Disk /dev/sdb: 2147 MB, 2147483648 bytes
255 heads, 63 sectors/track, 261 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sdb1 1 262 2097151+ ee EFI GPT
Partition 1 has different physical/logical beginnings (non-Linux?):
phys=(0, 0, 1) logical=(0,0, 2)
Partition 1 has different physical/logical endings:
phys=(1023, 254, 63) logical=(261, 21, 16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
[root@localhost ~]# mkfs.ext3 /dev/sdb1
mke2fs 1.35 (28-Feb-2004)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
262144 inodes, 524279 blocks
26213 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=536870912
16 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
1
2
3
4
5
6
7
[root@localhost ~]# mount /dev/sdb1 /mnt
[root@localhost ~]# df -h
Filesystem 容量 已用 可用 已用% 挂载点
/dev/sda3 <?xml:namespace prefix = st1 />32G 2.6G 28G 9% /
/dev/sda1 99M 12M 82M 13% /boot
none 252M 0 252M 0% /dev/shm
/dev/sdb1 2.0G 36M 1.9G 2% /mnt

openssl

强大的安全套接字层密码库

补充说明

OpenSSL 是一个强大的安全套接字层密码库,囊括主要的密码算法、常用的密钥和证书封装管理功能及SSL协议,并提供丰富的应用程序供测试或其它目的使用。在OpenSSL被曝出现严重安全漏洞后,发现多数通过SSL协议加密的网站使用名为OpenSSL的开源软件包。由于这是互联网应用最广泛的安全传输方法,被网银、在线支付、电商网站、门户网站、电子邮件等重要网站广泛使用,所以该漏洞影响范围广大。

OpenSSL有两种运行模式:交互模式和批处理模式。

直接输入openssl回车进入交互模式,输入带命令选项的openssl进入批处理模式。

OpenSSL整个软件包大概可以分成三个主要的功能部分:密码算法库、SSL协议库以及应用程序。OpenSSL的目录结构自然也是围绕这三个功能部分进行规划的。

对称加密算法

OpenSSL一共提供了8种对称加密算法,其中7种是分组加密算法,仅有的一种流加密算法是RC4。这7种分组加密算法分别是AES、DES、Blowfish、CAST、IDEA、RC2、RC5,都支持电子密码本模式(ECB)、加密分组链接模式(CBC)、加密反馈模式(CFB)和输出反馈模式(OFB)四种常用的分组密码加密模式。其中,AES使用的加密反馈模式(CFB)和输出反馈模式(OFB)分组长度是128位,其它算法使用的则是64位。事实上,DES算法里面不仅仅是常用的DES算法,还支持三个密钥和两个密钥3DES算法。

非对称加密算法

OpenSSL一共实现了4种非对称加密算法,包括DH算法、RSA算法、DSA算法和椭圆曲线算法(EC)。DH算法一般用户密钥交换。RSA算法既可以用于密钥交换,也可以用于数字签名,当然,如果你能够忍受其缓慢的速度,那么也可以用于数据加密。DSA算法则一般只用于数字签名。

信息摘要算法

OpenSSL实现了5种信息摘要算法,分别是MD2、MD5、MDC2、SHA(SHA1)和RIPEMD。SHA算法事实上包括了SHA和SHA1两种信息摘要算法,此外,OpenSSL还实现了DSS标准中规定的两种信息摘要算法DSS和DSS1。

密钥和证书管理

密钥和证书管理是PKI的一个重要组成部分,OpenSSL为之提供了丰富的功能,支持多种标准。

首先,OpenSSL实现了ASN.1的证书和密钥相关标准,提供了对证书、公钥、私钥、证书请求以及CRL等数据对象的DER、PEM和BASE64的编解码功能。OpenSSL提供了产生各种公开密钥对和对称密钥的方法、函数和应用程序,同时提供了对公钥和私钥的DER编解码功能。并实现了私钥的PKCS#12和PKCS#8的编解码功能。OpenSSL在标准中提供了对私钥的加密保护功能,使得密钥可以安全地进行存储和分发。

在此基础上,OpenSSL实现了对证书的X.509标准编解码、PKCS#12格式的编解码以及PKCS#7的编解码功能。并提供了一种文本数据库,支持证书的管理功能,包括证书密钥产生、请求产生、证书签发、吊销和验证等功能。

事实上,OpenSSL提供的CA应用程序就是一个小型的证书管理中心(CA),实现了证书签发的整个流程和证书管理的大部分机制。

实例

1、使用 openssl 生成密码

几乎所有 Linux 发行版都包含 openssl。我们可以利用它的随机功能来生成可以用作密码的随机字母字符串。

1
2
openssl rand -base64 10
# nU9LlHO5nsuUvw==

nU9LlHO5nsuUvw==

2、消息摘要算法应用例子

用SHA1算法计算文件file.txt的哈西值,输出到stdout:

1
# openssl dgst -sha1 file.txt

用SHA1算法计算文件file.txt的哈西值,输出到文件digest.txt:

1
# openssl sha1 -out digest.txt file.txt

用DSS1(SHA1)算法为文件file.txt签名,输出到文件dsasign.bin。签名的private key必须为DSA算法产生的,保存在文件dsakey.pem中。

1
# openssl dgst -dss1 -sign dsakey.pem -out dsasign.bin file.txt

用dss1算法验证file.txt的数字签名dsasign.bin,验证的private key为DSA算法产生的文件dsakey.pem。

1
# openssl dgst -dss1 -prverify dsakey.pem -signature dsasign.bin file.txt

用sha1算法为文件file.txt签名,输出到文件rsasign.bin,签名的private key为RSA算法产生的文件rsaprivate.pem。

1
# openssl sha1 -sign rsaprivate.pem -out rsasign.bin file.txt

用sha1算法验证file.txt的数字签名rsasign.bin,验证的public key为RSA算法生成的rsapublic.pem。

1
# openssl sha1 -verify rsapublic.pem -signature rsasign.bin file.txt

3、对称加密应用例子

对称加密应用例子,用DES3算法的CBC模式加密文件plaintext.doc,加密结果输出到文件ciphertext.bin。

1
# openssl enc -des3 -salt -in plaintext.doc -out ciphertext.bin

用DES3算法的OFB模式解密文件ciphertext.bin,提供的口令为trousers,输出到文件plaintext.doc。注意:因为模式不同,该命令不能对以上的文件进行解密。

1
# openssl enc -des-ede3-ofb -d -in ciphertext.bin -out plaintext.doc -pass pass:trousers

用Blowfish的CFB模式加密plaintext.doc,口令从环境变量PASSWORD中取,输出到文件ciphertext.bin。

1
# openssl bf-cfb -salt -in plaintext.doc -out ciphertext.bin -pass env:PASSWORD

给文件ciphertext.bin用base64编码,输出到文件base64.txt。

1
# openssl base64 -in ciphertext.bin -out base64.txt

用RC5算法的CBC模式加密文件plaintext.doc,输出到文件ciphertext.bin,salt、key和初始化向量(iv)在命令行指定。

1
# openssl rc5 -in plaintext.doc -out ciphertext.bin -S C62CB1D49F158ADC -iv E9EDACA1BD7090C6 -K 89D4B1678D604FAA3DBFFD030A314B29

4、Diffie-Hellman应用例子

使用生成因子2和随机的1024-bit的素数产生D0ffie-Hellman参数,输出保存到文件dhparam.pem

1
# openssl dhparam -out dhparam.pem -2 1024

从dhparam.pem中读取Diffie-Hell参数,以C代码的形式,输出到stdout。

1
# openssl dhparam -in dhparam.pem -noout -C

5、DSA应用例子应用例子

生成1024位DSA参数集,并输出到文件dsaparam.pem。

1
# openssl dsaparam -out dsaparam.pem 1024

使用参数文件dsaparam.pem生成DSA私钥匙,采用3DES加密后输出到文件dsaprivatekey.pem

1
# openssl gendsa -out dsaprivatekey.pem -des3 dsaparam.pem

使用私钥匙dsaprivatekey.pem生成公钥匙,输出到dsapublickey.pem

1
# openssl dsa -in dsaprivatekey.pem -pubout -out dsapublickey.pem

从dsaprivatekey.pem中读取私钥匙,解密并输入新口令进行加密,然后写回文件dsaprivatekey.pem

1
# openssl dsa -in dsaprivatekey.pem -out dsaprivatekey.pem -des3 -passin

6、RSA应用例子

产生1024位RSA私匙,用3DES加密它,口令为trousers,输出到文件rsaprivatekey.pem

1
# openssl genrsa -out rsaprivatekey.pem -passout pass:trousers -des3 1024

从文件rsaprivatekey.pem读取私匙,用口令trousers解密,生成的公钥匙输出到文件rsapublickey.pem

1
# openssl rsa -in rsaprivatekey.pem -passin pass:trousers -pubout -out rsapubckey.pem

用公钥匙rsapublickey.pem加密文件plain.txt,输出到文件cipher.txt

1
# openssl rsautl -encrypt -pubin -inkey rsapublickey.pem -in plain.txt -out cipher.txt

使用私钥匙rsaprivatekey.pem解密密文cipher.txt,输出到文件plain.txt

1
# openssl rsautl -decrypt -inkey rsaprivatekey.pem -in cipher.txt -out plain.txt

用私钥匙rsaprivatekey.pem给文件plain.txt签名,输出到文件signature.bin

1
# openssl rsautl -sign -inkey rsaprivatekey.pem -in plain.txt -out signature.bin

用公钥匙rsapublickey.pem验证签名signature.bin,输出到文件plain.txt

1
# openssl rsautl -verify -pubin -inkey rsapublickey.pem -in signature.bin -out plain

从X.509证书文件cert.pem中获取公钥匙,用3DES加密mail.txt,输出到文件mail.enc

1
# openssl smime -encrypt -in mail.txt -des3 -out mail.enc cert.pem

从X.509证书文件cert.pem中获取接收人的公钥匙,用私钥匙key.pem解密S/MIME消息mail.enc,结果输出到文件mail.txt

1
# openssl smime -decrypt -in mail.enc -recip cert.pem -inkey key.pem -out mail.txt

cert.pem为X.509证书文件,用私匙key,pem为mail.txt签名,证书被包含在S/MIME消息中,输出到文件mail.sgn

1
# openssl smime -sign -in mail.txt -signer cert.pem -inkey key.pem -out mail.sgn

验证S/MIME消息mail.sgn,输出到文件mail.txt,签名者的证书应该作为S/MIME消息的一部分包含在mail.sgn中

1
# openssl smime -verify -in mail.sgn -out mail.txt

更多实例:

1
2
3
4
openssl version -a
openssl help
openssl genrsa -aes128 -out fd.key 2048 # pem format
openssl rsa -text -in fd.key

od

输出文件的八进制、十六进制等格式编码的字节

补充说明

od命令 用于输出文件的八进制、十六进制或其它格式编码的字节,通常用于显示或查看文件中不能直接显示在终端的字符。

常见的文件为文本文件和二进制文件。此命令主要用来查看保存在二进制文件中的值。比如,程序可能输出大量的数据记录,每个数据是一个单精度浮点数。这些数据记录存放在一个文件中,如果想查看下这个数据,这时候od命令就派上用场了。在我看来,od命令主要用来格式化输出文件数据,即对文件中的数据进行无二义性的解释。不管是IEEE754格式的浮点数还是ASCII码,od命令都能按照需求输出它们的值。

语法

1
od(选项)(参数)

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
-a:此参数的效果和同时指定“-ta”参数相同;
-A:<字码基数>:选择以何种基数计算字码;
-b:此参数的效果和同时指定“-toC”参数相同;
-c:此参数的效果和同时指定“-tC”参数相同;
-d:此参数的效果和同时指定“-tu2”参数相同;
-f:此参数的效果和同时指定“-tfF”参数相同;
-h:此参数的效果和同时指定“-tx2”参数相同;
-i:此参数的效果和同时指定“-td2”参数相同;
-j<字符数目>或--skip-bytes=<字符数目>:略过设置的字符数目;
-l:此参数的效果和同时指定“-td4”参数相同;
-N<字符数目>或--read-bytes=<字符数目>:到设置的字符树目为止;
-o:此参数的效果和同时指定“-to2”参数相同;
-s<字符串字符数>或--strings=<字符串字符数>:只显示符合指定的字符数目的字符串;
-t<输出格式>或--format=<输出格式>:设置输出格式;
-v或--output-duplicates:输出时不省略重复的数据;
-w<每列字符数>或--width=<每列字符数>:设置每列的最大字符数;
-x:此参数的效果和同时指定“-h”参数相同;
--help:在线帮助;
--version:显示版本信息。

参数

文件:指定要显示的文件。

实例

1
2
3
[linuxde@localhost ~]$ echo abcdef g > tmp
[linuxde@localhost ~]$ cat tmp
abcdef g

说明:先准备一个tmp文件

1
2
3
[linuxde@localhost ~]$ od -b tmp
0000000 141 142 143 144 145 146 040 147 012
0000011

说明:使用单字节八进制解释进行输出,注意左侧的默认地址格式为八字节

1
2
3
[linuxde@localhost ~]$ od -c tmp
0000000 a b c d e f g \n
0000011

说明:使用ASCII码进行输出,注意其中包括转义字符

1
2
3
[linuxde@localhost ~]$ od -t d1 tmp
0000000 97 98 99 100 101 102 32 103 10
0000011

说明:使用单字节十进制进行解释

1
2
3
[linuxde@localhost ~]$ od -A d -c tmp
0000000 a b c d e f g \n
0000009

说明:设置地址格式为十进制。

1
2
3
[linuxde@localhost ~]$ od -A x -c tmp
000000 a b c d e f g \n
000009

说明:设置地址格式为十六进制

1
2
3
[linuxde@localhost ~]$ od -j 2 -c tmp
0000002 c d e f g \n
0000011

说明:跳过开始的两个字节

1
2
3
[linuxde@localhost ~]$ od -N 2 -j 2 -c tmp
0000002 c d
0000004

说明:跳过开始的两个字节,并且仅输出两个字节

1
2
3
4
5
6
7
8
9
10
11
[linuxde@localhost ~]$ od -w1 -c tmp
0000000 a
0000001 b
0000002 c
0000003 d
0000004 e
0000005 f
0000006
0000007 g
0000010 \n
0000011

说明:每行仅输出1个字节

1
2
3
4
5
6
7
[linuxde@localhost ~]$ od -w2 -c tmp
0000000 a b
0000002 c d
0000004 e f
0000006 g
0000010 \n
0000011

说明:每行输出两个字节

1
2
3
4
5
[linuxde@localhost ~]$ od -w3 -b tmp
0000000 141 142 143
0000003 144 145 146
0000006 040 147 012
0000011

说明:每行输出3个字节,并使用八进制单字节进行解释

objdump

显示二进制文件信息

补充说明

objdump命令 是用查看目标文件或者可执行的目标文件的构成的gcc工具。

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
--archive-headers 
-a
显示档案库的成员信息,类似ls -l将lib*.a的信息列出。

-b bfdname
--target=bfdname
指定目标码格式。这不是必须的,objdump能自动识别许多格式,比如:

objdump -b oasys -m vax -h fu.o
显示fu.o的头部摘要信息,明确指出该文件是Vax系统下用Oasys编译器生成的目标文件。objdump -i将给出这里可以指定的目标码格式列表。

-C
--demangle
将底层的符号名解码成用户级名字,除了去掉所开头的下划线之外,还使得C++函数名以可理解的方式显示出来。

--debugging
-g
显示调试信息。企图解析保存在文件中的调试信息并以C语言的语法显示出来。仅仅支持某些类型的调试信息。有些其他的格式被readelf -w支持。

-e
--debugging-tags
类似-g选项,但是生成的信息是和ctags工具相兼容的格式。

--disassemble
-d
从objfile中反汇编那些特定指令机器码的section。

-D
--disassemble-all
与 -d 类似,但反汇编所有section.

--prefix-addresses
反汇编的时候,显示每一行的完整地址。这是一种比较老的反汇编格式。

-EB
-EL
--endian={big|little}
指定目标文件的小端。这个项将影响反汇编出来的指令。在反汇编的文件没描述小端信息的时候用。例如S-records.

-f
--file-headers
显示objfile中每个文件的整体头部摘要信息。

-h
--section-headers
--headers
显示目标文件各个section的头部摘要信息。

-H
--help
简短的帮助信息。

-i
--info
显示对于 -b 或者 -m 选项可用的架构和目标格式列表。

-j name
--section=name
仅仅显示指定名称为name的section的信息

-l
--line-numbers
用文件名和行号标注相应的目标代码,仅仅和-d、-D或者-r一起使用使用-ld和使用-d的区别不是很大,在源码级调试的时候有用,要求编译时使用了-g之类的调试编译选项。

-m machine
--architecture=machine
指定反汇编目标文件时使用的架构,当待反汇编文件本身没描述架构信息的时候(比如S-records),这个选项很有用。可以用-i选项列出这里能够指定的架构.

--reloc
-r
显示文件的重定位入口。如果和-d或者-D一起使用,重定位部分以反汇编后的格式显示出来。

--dynamic-reloc
-R
显示文件的动态重定位入口,仅仅对于动态目标文件意义,比如某些共享库。

-s
--full-contents
显示指定section的完整内容。默认所有的非空section都会被显示。

-S
--source
尽可能反汇编出源代码,尤其当编译的时候指定了-g这种调试参数时,效果比较明显。隐含了-d参数。

--show-raw-insn
反汇编的时候,显示每条汇编指令对应的机器码,如不指定--prefix-addresses,这将是缺省选项。

--no-show-raw-insn
反汇编时,不显示汇编指令的机器码,如不指定--prefix-addresses,这将是缺省选项。

--start-address=address
从指定地址开始显示数据,该选项影响-d、-r和-s选项的输出。

--stop-address=address
显示数据直到指定地址为止,该项影响-d、-r和-s选项的输出。

-t
--syms
显示文件的符号表入口。类似于nm -s提供的信息

-T
--dynamic-syms
显示文件的动态符号表入口,仅仅对动态目标文件意义,比如某些共享库。它显示的信息类似于 nm -D|--dynamic 显示的信息。

-V
--version
版本信息

--all-headers
-x
显示所可用的头信息,包括符号表、重定位入口。-x 等价于-a -f -h -r -t 同时指定。

-z
--disassemble-zeroes
一般反汇编输出将省略大块的零,该选项使得这些零块也被反汇编。

@file 可以将选项集中到一个文件中,然后使用这个@file选项载入。

实例

首先,在给出后面大部分测试所基于的源代码以及编译指令。 源代码如下:

1
root@localhost [test]# nl mytest.cpp
1
2
3
4
5
6
7
8
9
void printTest() {
char a;
a = 'a';
}

void printTest2() {
int a = 2;
a+=2;
}

对以上源代码进行编译,如下:

1
[root@localhost test]# g++ -c -g mytest.cpp

这里,生成的文件是mytest.o,为了方便测试包含了调试的信息,对可执行文件的测试,显示的结果类似。

查看当前使用的objdump的版本号:

1
2
3
4
5
[root@localhost test]# objdump -V 
GNU objdump 2.17.50.0.6-14.el5 20061020
Copyright 2005 free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License. This program has absolutely no warranty.

查看档案库文件中的信息:

1
2
3
4
5
6
[root@localhost test]# objdump -a libmy2.a 
In archive libmy2.a:
myfile.o: file format elf32-i386
rwxrwxrwx 0/0 2724 Nov 16 16:06 2009 myfile.o
mytest.o: file format elf32-i386
rw-r--r-- 0/0 727 Jul 13 15:32 2011 mytest.o

这里,libmy2.a是一个使用ar命令将多个*.o目标文件打包而生成的静态库。命令的输出类似ar -tv,相比较ar -tv输出如下:

1
2
3
[root@localhost test]# ar -tv libmy2.a 
rwxrwxrwx 0/0 2724 Nov 16 16:06 2009 myfile.o
rw-r--r-- 0/0 727 Jul 13 15:32 2011 mytest.o

显示可用的架构和目标结构列表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
[root@localhost test]# objdump -i 
BFD header file version 2.17.50.0.6-14.el5 20061020
elf32-i386
(header little endian, data little endian)
i386
a.out-i386-linux
(header little endian, data little endian)
i386
efi-app-ia32
(header little endian, data little endian)
i386
elf64-x86-64
(header little endian, data little endian)
i386
elf64-little
(header little endian, data little endian)
i386
elf64-big
(header big endian, data big endian)
i386
elf32-little
(header little endian, data little endian)
i386
elf32-big
(header big endian, data big endian)
i386
srec
(header endianness unknown, data endianness unknown)
i386
symbolsrec
(header endianness unknown, data endianness unknown)
i386
tekhex
(header endianness unknown, data endianness unknown)
i386
binary
(header endianness unknown, data endianness unknown)
i386
ihex
(header endianness unknown, data endianness unknown)
i386
trad-core
(header endianness unknown, data endianness unknown)

elf32-i386 a.out-i386-linux efi-app-ia32 elf64-x86-64
i386 elf32-i386 a.out-i386-linux efi-app-ia32 elf64-x86-64

elf64-little elf64-big elf32-little elf32-big srec symbolsrec
i386 elf64-little elf64-big elf32-little elf32-big srec symbolsrec

tekhex binary ihex trad-core
i386 tekhex binary ihex ---------

这里,显示的信息是相对于 -b 或者 -m 选项可用的架构和目标格式列表。

显示mytest.o文件中的text段的内容:

1
2
3
4
5
[root@localhost test]# objdump --section=.text -s mytest.o 
mytest.o: file format elf32-i386
Contents of section .text:
0000 5589e583 ec10c645 ff61c9c3 5589e583 U......E.a..U...
0010 ec10c745 fc020000 008345fc 02c9c3 ...E......E....

这里注意,不能单独使用-j或者–section,例如objdump --section=.text mytest.o是不会运行成功的。

反汇编mytest.o中的text段内容,并尽可能用源代码形式表示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[root@localhost test]# objdump -j .text -S mytest.o 
mytest.o: file format elf32-i386
Disassembly of section .text:
00000000 <_Z9printTestv>:
void printTest()
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 10 sub $0x10,%esp
{
char a;
a = 'a';
6: c6 45 ff 61 movb $0x61,0xffffffff(%ebp)
}
a: c9 leave
b: c3 ret

000000c <_Z10printTest2v>:
void printTest2()
c: 55 push %ebp
d: 89 e5 mov %esp,%ebp
f: 83 ec 10 sub $0x10,%esp
{
int a = 2;
12: c7 45 fc 02 00 00 00 movl $0x2,0xfffffffc(%ebp)
a+=2;
19: 83 45 fc 02 addl $0x2,0xfffffffc(%ebp)
}
1d: c9 leave
1e: c3 ret

这里注意,不能单独使用-j或者–section,例如objdump -j .text mytest.o是不会运行成功的。另外-S命令对于包含调试信息的目标文件,显示的效果比较好,如果编译时没有指定g++的-g选项,那么目标文件就不包含调试信息,那么显示效果就差多了。

反汇编出mytest.o的源代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
[root@localhost test]# objdump -S mytest.o 
mytest.o: file format elf32-i386

Disassembly of section .text:

00000000 <_Z9printTestv>:
void printTest()
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 10 sub $0x10,%esp
{
char a;
a = 'a';
6: c6 45 ff 61 movb $0x61,0xffffffff(%ebp)
}
a: c9 leave
b: c3 ret

0000000c <_Z10printTest2v>:
void printTest2()
c: 55 push %ebp
d: 89 e5 mov %esp,%ebp
f: 83 ec 10 sub $0x10,%esp
{
int a = 2;
12: c7 45 fc 02 00 00 00 movl $0x2,0xfffffffc(%ebp)
a+=2;
19: 83 45 fc 02 addl $0x2,0xfffffffc(%ebp)
}
1d: c9 leave
1e: c3 ret

这里,尤其当编译的时候指定了-g这种调试参数时,反汇编的效果比较明显。隐含了-d参数。

显示文件的符号表入口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
[root@localhost test]# objdump -t mytest.o 
mytest.o: file format elf32-i386

SYMBOL TABLE:
00000000 l df *ABS* 00000000 mytest.cpp
00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 l d .bss 00000000 .bss
00000000 l d .debug_abbrev 00000000 .debug_abbrev
00000000 l d .debug_info 00000000 .debug_info
00000000 l d .debug_line 00000000 .debug_line
00000000 l d .debug_frame 00000000 .debug_frame
00000000 l d .debug_loc 00000000 .debug_loc
00000000 l d .debug_pubnames 00000000 .debug_pubnames
00000000 l d .debug_aranges 00000000 .debug_aranges
00000000 l d .note.GNU-stack 00000000 .note.GNU-stack
00000000 l d .comment 00000000 .comment
00000000 g F .text 0000000c _Z9printTestv
00000000 *UND* 00000000 __gxx_personality_v0
0000000c g F .text 00000013 _Z10printTest2v

这里,输出的信息类似nm -s命令的输出,相比较之下,nm命令的输出如下:

1
2
3
4
[root@localhost test]# nm -s mytest.o 
0000000c T _Z10printTest2v
00000000 T _Z9printTestv
U __gxx_personality_v0

显示文件的符号表入口,将底层符号解码并表示成用户级别:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
[root@localhost test]# objdump -t -C mytest.o 
mytest.o: file format elf32-i386
SYMBOL TABLE:
00000000 l df *ABS* 00000000 mytest.cpp
00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 l d .bss 00000000 .bss
00000000 l d .debug_abbrev 00000000 .debug_abbrev
00000000 l d .debug_info 00000000 .debug_info
00000000 l d .debug_line 00000000 .debug_line
00000000 l d .debug_frame 00000000 .debug_frame
00000000 l d .debug_loc 00000000 .debug_loc
00000000 l d .debug_pubnames 00000000 .debug_pubnames
00000000 l d .debug_aranges 00000000 .debug_aranges
00000000 l d .note.GNU-stack 00000000 .note.GNU-stack
00000000 l d .comment 00000000 .comment
00000000 g F .text 0000000c printTest()
00000000 *UND* 00000000 __gxx_personality_v0
0000000c g F .text 00000013 printTest2()

这里,和没-C相比,printTest2函数可读性增加了。

反汇编目标文件的特定机器码段:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
[root@localhost test]# objdump -d mytest.o 
mytest.o: file format elf32-i386
Disassembly of section .text:

00000000 <_Z9printTestv>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 10 sub $0x10,%esp
6: c6 45 ff 61 movb $0x61,0xffffffff(%ebp)
a: c9 leave
b: c3 ret

0000000c <_Z10printTest2v>:
c: 55 push %ebp
d: 89 e5 mov %esp,%ebp
f: 83 ec 10 sub $0x10,%esp
12: c7 45 fc 02 00 00 00 movl $0x2,0xfffffffc(%ebp)
19: 83 45 fc 02 addl $0x2,0xfffffffc(%ebp)
1d: c9 leave
1e: c3 ret

这里,对text段的内容进行了反汇编。

反汇编特定段,并将汇编代码对应的文件名称和行号对应上:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[root@localhost test]# objdump -d -l mytest.o
mytest.o: file format elf32-i386
Disassembly of section .text:

00000000 <_Z9printTestv>:
_Z9printTestv():
/root/test/04_libraryTest/mytest.cpp:1
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 10 sub $0x10,%esp
/root/test/04_libraryTest/mytest.cpp:4
6: c6 45 ff 61 movb $0x61,0xffffffff(%ebp)
/root/test/04_libraryTest/mytest.cpp:5
a: c9 leave
b: c3 ret

0000000c <_Z10printTest2v>:
_Z10printTest2v():
/root/test/04_libraryTest/mytest.cpp:6
c: 55 push %ebp
d: 89 e5 mov %esp,%ebp
f: 83 ec 10 sub $0x10,%esp
/root/test/04_libraryTest/mytest.cpp:8
12: c7 45 fc 02 00 00 00 movl $0x2,0xfffffffc(%ebp)
/root/test/04_libraryTest/mytest.cpp:9
19: 83 45 fc 02 addl $0x2,0xfffffffc(%ebp)
/root/test/04_libraryTest/mytest.cpp:10
1d: c9 leave
1e: c3 ret

这里,项”-d”从objfile中反汇编那些特定指令机器码的section,而使用”-l”指定用文件名和行号标注相应的目标代码,仅仅和-d、-D或者-r一起使用,使用-ld和使用-d的区别不是很大,在源码级调试的时候有用,要求编译时使用了-g之类的调试编译选项。

显示目标文件各个段的头部摘要信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[root@localhost test]# objdump -h mytest.o 
mytest.o: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000001f 00000000 00000000 00000034 2**2
CONTENTS, ALLOC, LOAD, readonly, CODE
1 .data 00000000 00000000 00000000 00000054 2**2
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 00000000 00000000 00000054 2**2
ALLOC
3 .debug_abbrev 00000046 00000000 00000000 00000054 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_info 000000ed 00000000 00000000 0000009a 2**0
CONTENTS, RELOC, READONLY, DEBUGGING
5 .debug_line 0000003e 00000000 00000000 00000187 2**0
CONTENTS, RELOC, READONLY, DEBUGGING
6 .debug_frame 00000044 00000000 00000000 000001c8 2**2
CONTENTS, RELOC, READONLY, DEBUGGING
7 .debug_loc 00000058 00000000 00000000 0000020c 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_pubnames 0000002f 00000000 00000000 00000264 2**0
CONTENTS, RELOC, READONLY, DEBUGGING
9 .debug_aranges 00000020 00000000 00000000 00000293 2**0
CONTENTS, RELOC, READONLY, DEBUGGING
10 .comment 0000002e 00000000 00000000 000002b3 2**0
CONTENTS, READONLY
11 .note.GNU-stack 00000000 00000000 00000000 000002e1 2**0
CONTENTS, READONLY

这里,更多的内容参见man objdump中的这个选项。